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Today : Stability of Closed-Loop System

—O— K(s0)

Y

G(s) >

Question: For what controllers K is the closed-loop stable?

Nyquist cirterion: Simple method to determine if the closed-loop system will be
stable by looking at the open-loop Nyquist plot.

- Can generate the open-loop Nyquist plot from system measurements without
doing any modeling
- Can easily define a range of stabilizing control gains

- Tells us how close the system is to unstable - will use to define the notion of
robustness next week



Stability - Example

Video : f22



Stability - Example

Video : tacoma



BIBO Stability

Bounded Input Bounded Output (BIBO)

- If the input signal is bounded energy, then the system will not cause the
output to have unbounded energy

A signal w(t) is said to be bounded if there exists a constant C such that |w(t)| < C
forallt >0

BIBO Stable System

A system is said to be BIBO stable, if the output signal is bounded for all bounded
input signals.

- Stability is a basic property that all closed-loop systems must have

- Note that a BIBO stable system does not guarantee that the system does
anything useful, only that it doesn’t explode!

- There are many more types of stability



Stability Condition

An LTI system is BIBO stable if its impulse response is absolutely integrable
[ o) < o0
0

y(t) = /’:(]u(T)g(th)dT

= /::0 g(T)u(t — 7)dr

Assume bounded input u(t) < C

(b)) < / lg(r)ult - 7)|dr
<C/ T)|dT

and we see that y is bounded if g is absolutely integrable



Stability Condition

Stability via System Poles

An LTI system with transfer function G(s) is BIBO stable if and only if all its poles
are in the left half plane.

Transfer function

In the time-domain:

g(t) = c1e™’ + -+ cp et

We see that g(t) is integrable only if Re(p;) < 0 for all <.

Note: This idea extends to systems with poles at zero, and multiple poles.



Example - Integrator

1
) = G(z) = =
y=u (2) =
Not BIBO stable, because pole is on the imaginary axis.
Response to the bounded step input u(t) = 1,t >0,y =t
2 2
1.5} a 1.5} a
ERE = 1 :
0.5 n 0.5 n
0 : 0 :
0 1 2 3 0 1 2 3

Time (s) Time (s)



Example - Delayed First-Order System

e
G(S):s—i—l

All the poles are in the left half plane - stable.

Output




Nyquist Criterion



Stability of Closed-Loop System

HCI)—' K(s;0)

Suppose we know G(s), and a parameterized version of our controller K (s;6)

G(s) >

Y

— For what values of 6 is the closed-loop stable?
Example 1: PI

1
K(s) =K, (ﬂ + 1) parameters: Kp, T;

Example 2: Stabilizing controllers

K(s) = % poles of K(s) in the LHP



Nyquist Criterion

Goal: Decide if closed-loop is stable by looking at open-loop Nyquist diagram

Why?
- Simple test to know if a controller will be stable without computing the
closed-loop poles

- We can shape the open-loop behaviour as desired by changing the controller
in K(s)G(s)

- Simple design methods based on experimental data

- Determine robustness of the closed-loop system to uncertain model
parameters, noise, structure, etc

- Optimize performance over all possible control laws subject to stability of
closed-loop system



Closed-Loop Transfer Functions

—O—  K(s) S G(s) -

|

Controller K and system H are rational functions of polynomials in s

_ B
A(s)

K(s) =22 G(s)



Closed-Loop Transfer Functions

—O—  K(s)

|

Controller K and system H are rational functions of polynomials in s

G(s) >

Y

_ S(s) o B
K = Ry ) =4y
So the closed-loop system is:
K(s)G(s) _ B(s)S(s)

Gals) = T K (5)G() ~ AGRG) + B(3)S()



Stability of Closed-Loop System

K(s)G(s) B(s)S(s)

Ga(s) = 1+ K(s)G(s)  A(s)R(s) + B(s)S(s)

Closed-loop system is stable if and only if the roots of the characteristic
polynomial are in the left half plane

p(s) := A(s)R(s) + B(s)S(s)

True if and only if the zeros of 1 + K (s)G(s) are in the left half plane (LHP)



Stability of Closed-Loop System

K(s)G(s) B(s)S(s)

Ga(s) = 1+ K(s)G(s)  A(s)R(s) + B(s)S(s)

Closed-loop system is stable if and only if the roots of the characteristic
polynomial are in the left half plane

p(s) :== A(s)R(s) + B(s)S(s)

True if and only if the zeros of 1 + K (s)G(s) are in the left half plane (LHP)

. S(s) B(s) _ As)R(s) + B(s)S(s)
PPR@OEO =14 30 A = AR()




- The closed-loop poles are totally different from the open-loop ones
- The closed-loop system contains the open-loop zeros S(s)
- All four basic transfer functions have the same poles

G(s)K(s) 1 G(s) K(s)
1+ G(s)K(s) 1+ G(s)K(s) 1+ G(s)K(s) 1+ G(s)K(s)




All Transfer Functions

K@H?;mL K(s) w@++ G(s) Tﬂy@
“On— V(s)
Transfer functions from all inputs to all outputs:
Y'(s) ) G(s)K(s) G(s) 1 Ye(s)
Eis)| = —F >~ 1 —G(s) -1 W (s)
vis| TR 1 —K@)] |V(s)
Four basic transfer functions:
G(s)K(s) 1 G(s) K(s)

1+ G(s)K(s) 1+ G(s)K(s) 1+ G(s)K(s) 1+ G(s)K(s)

- Functions have the same poles or fundamental modes
- All depend on the open-loop transfer function G(s) K (s)



Nyquist Criterion : The Idea

What we want to know:

- Does 1+ K (s)G(s) have any zeros in the right-half plane?

The information we have:

- A plot of K(s)G(s) for s = jw, i.e, on the imaginary axis
(Note that this is a closed D-shaped contour around the RHP)

The trick from complex analysis:

- The number of poles / zeros of 1 + K (s)G(s) outside the LHP is equal to the
number of times the curve 1 + K (jw)H (jw) encircles the origin

We can tell if the closed-loop system is stable by counting how many times the
nyquist plot of the open-loop system encircles the origin.



Cauchy’s Argument Principle

Consider the function:

(s —21)(s — 22)

() = ()=o)

Evaluate Hi(s) at a point so, and write in polar notation

Hi(s0) (50— 21)(80 — 22) _ T2y €%1r,, €%
S = = - -
1o (so —p1)(so —p2)  Tp eIPirp,ei2

we see that the argument is additive
ZHi(so) =01+ 02 — (1 + $2)

where 60;, ¢; is the angle from the " pole/zero to the point so



Cauchy’s Argument Principle

Let the point s¢ follow a smooth, closed, non-self-intersecting curve C;

Case 1: No poles or zeros inside C;

Im(s) Im[H (5)]

Hy(s)

91( % % | i So
So

T a

& by Re(s) Re[H ()]
0,

ZHi(s) = a =01+ 602 — (¢1 + ¢2)

- awill increase and decease as s changes, but integral of a around C; is zero

- Implication: The curve {H1(s) | s € C1} does not contain the origin



Cauchy’s Argument Principle

Let the point s¢ follow a smooth, closed, non-self-intersecting curve C;

Case 2: Pole inside C;
Im(s) Im[Hy(s)]

% Hy(s)
@ Cy
o ) /
e @

* Re(s) \ Re[H,(s)]
0,

ZHi(s) = a =01+ 0 — (¢1 + ¢2)

0,

- Integral of o around C4 is —360°
- Implication: The curve {H(s) | s € Cy } contains the origin

- (Note: A zero would cause an increase of 360°)



Cauchy’s Argument Principle

Cauchy’s Argument Principle

A contour map of a complex function will encircle the origin Z — P times, where
Z is the number of zeros and P is the number of poles of the function inside the
contour.

How to use this for control?



Nyquist Plots and Cauchy’s Argument Principle

The question: Does 1 + K (s)G(s) have a zero in the right half plane?

- Take the contour to be a clockwise encirclement of im(“')
. =< Contour at
the right half plane N infinity
AN
- Assume for now that K (s)G(s) has no unstable poles N
- The Argument Principle tells us that 1 + K (s)G(s) has \ Y \\
a zero in the right half plane if the plot : \|
1+ K(jw)G(jw) contains the origin /! Re(s)
- This is equivalent to saying that the Nyquist plot of c /#
K(s)G(s) does not contain the point —1 ‘\//

21



Nyquist Criteria

1. Plot the Nyquist plot of K(s)G(s)
2. Evaluate the number of clockwise encirclements of —1, call this V
- Draw a straight line in any direction from —1 to co
- Count the net number of left-to-right crossings of the straight line by K (s)G(s).
This is N
- Right-to-left crossing decrease N by one. N can be negative.
3. Determine the number of unstable poles of G(s), call this P
4. Calculate the number of unstable closed-loop roots Z

Z=N+P

Nyquist criterion: The closed loop system is stable if and only if Z is zero.

22



Detail : Why can we plot only the imaginary axis?

We should plot the full D-contour, but we only plot the
contour along the imaginary axis. Why?

T~ Contour at
S infinity
N\
\
\
\
AN ¢ \
\
|
/' Re(s)
¥
C, //
\/
/
r'e
7

All physical systems have more poles than zeros (strictly proper). This is because
infinite frequency oscillations result in no motion (infinite acceleration is not

possible).

lim |G(jw)

=0 — Nyquist plot for the ‘D’ section is zero.

Note: G(—jw) = G(jw). The Nyquist plot is symmetric around the real axis.

23
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1

Example G(s) =

(s+1)2

Stable Im[G(s)]
Z=N+P 06
=040 0/t
2+

Re|G(s)]
-12 -1 —-0.8 —0.6 —0.4 —0.2 0.2 04 06 08 1.2

—[2+
—ON |
—0.6 |

24



Example G(s)=——3 ((s + Still stable?

Im[G(s)]

1)K 2

® I e I I I I I
-1.2 -1 —-0.8 —0.6 —0.4 —0.2 0.2 04 06 0.8 . 1.2
2

—oN\

—0.6 |

24



Example G(s)=——3 K (s) = 2 + Still stable?

Stable: Im[G(s)]

No positive value of 0.6+
K will intersect the

Nyquist plot 0/ +

~1/K 27

RefGi(s)]
L ' —@— ' ' ' ' ' >
—-1.2 -1 —-0.8 —0.6 —0.4 —0.2 02 04 06 08 ) 1.2

—f21

—ON |

—0.6 f
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Example G(s) =04

s+ 0.9
52 —0.95+0.6

K(s)=1

L 4
-1

—0.8 —0.6 /—04 —0.2

0.8
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Example G(s) =04

Unstable
Z=N+P
=0+2

=2

s+0.9

52 —0.95+0.6

K(s)=1

-1 —0.8 —0.6 /~04 —0.2

—0.8 |
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Example G(s) =04

s+ 0.9
52 —0.95+0.6

K(s)=1

L 4
-1

—0.8 —0.6 /—04 —0.2

0.8

25



Example G(s) =04

Stable

Z=N+P

52 —0.95+0.6

S .9 \
540 K(s) =1

0.8 1

-1 —0.8 —0.6 /~04 —0.2

—0.8 |
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Example G(s) =04

Stable

Z=N+P
=-2+42
=0

52 —0.95+0.6

s+0.9

0.8

0.2+

Stable for K > 2.3
NN

K(s)=1

HIm[G(s)]

0.4+

-1 —0.8 —0.6 /~04 —0.2

—0.8 |

25



Example
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Example
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Unstable

Z=N+P
=0+1
=1

1K //_\x

-2 -1
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Example
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Example G(s) =

The Nyquist curve is unbounded as w — 0.
Does the curve enclose the RHP, or the LHP? z



Impact of Integrators

Suppose our system has the form

B( ) Im(s)
S

K(S)G(S) - qu(S)

What does the Nyquist plot look like?

1/

Re(s)
Follow a curve that takes an infinitesimal

curve around the point s = 0.

Copyright ©2015 Pearson Educatian, Al Rights Reserved
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Impact of Integrators

‘Integrator’ Segment

- ~v:= B(0)/A(0) is the steady-state gain
- The Nyquist plot will form a semi-circle with infinite radius
- If ¢ > 1, then we'll have multiple semi-circles

15 15

1r 1r

0.5p 0.5p

Imaginary Axis
=

Imaginary Axis
.

_1— _1,
155 0 o5 1 15 2 25 Y™ o5 o0 o5 1 15 2 25

Real Axis Real Axis
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Example G(s) =

m[G(s)]
0=0

Arc at oo

0<0 all from w =0

w==x1 D

Re[G(s)]

- 0 < K < 2: Zero crossings, zero unstable open-loop poles — Stable
cK>2N=2P=0—>2=2
cK<OON=1,P=0—2Z=1

30



TIm(G(s)]

Re[Gg(s)}
0.5

—11

Stability depends on whether the infinite curve is clockwise or counterclockwise
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Example G(s) =

s(s/10 — 1)

Im[G(s)]

Arc at co
all from w=0

e

%A
(b) @)

Copyright ©12015 Pearsan Education, All Rights Reserved Copyright €2015 Pearson Education, All Rights Reserved
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TIm(G(s)]

Re[G(s)]

|
T

0.5
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Im[G(s)]

Re(G(s)
0.5

—11

Stable for K > 1
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Simplified Nyquist Criterion

If all the poles of the system are stable, then there is a simpler condition.

- No unstable open-loop poles - P =0

- Number of unstable closed-loop poles Z = N, the number of encirclements

Simplified Nyquist Criterion

If the open-loop system is stable and the —1 point lies to the left of the Nyquist
curve, then the closed-loop system is stable.
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0.8 —0.6 —04 —0.2
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TIm(G(s)]

Re[G(s)]

|
T

0.5
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8.88 - 10%(s? 4 780s + 1.69 - 10°)

(s 4+ 1000) (52 4 505 4 6.25 - 106

Im[G(s)]
1.5+

—1.5+
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AFM - Step response

Close-loop step response

0.20

0.15

T
|

T
|

0.10

0.05 - N

0.0 | | | | | | |
8.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
Time (s)

Steady-state offset — need an integrator!
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AFM - PI Control

8.88 - 10%(s? 4 780s + 1.69 - 10°) 2
(s -+ 3000)(s 4 1000)(s + 100)(s2 + 50s + 6.25 - 106)

K(s)=K (1+ Tls)

G(s) =

40



AFM - PI Control

8.88 - 10%(s? 4 780s + 1.69 - 10°) 2
(s -+ 3000)(s 4 1000)(s + 100)(s2 + 50s + 6.25 - 106)

K(s)=K (1+ Tls)

G(s) =

Stable for K < 1.17

40



AFM - PI Control

Step response with K = 0.5

T T T T T T

0.5 - N

| |
8.00 0.05 0.10 0.15 0.20 0.25 0.30
Time (s)
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Nyquist cirterion:  Simple method to determine if the closed-loop system will be
stable by looking at the open-loop Nyquist plot.

Why?
- Can generate the open-loop Nyquist plot from system measurements without
doing any modeling
- Can easily define a range of stabilizing control gains

- Tells us how close the system is to unstable - will use to define the notion of
robustness next week
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